TD 28

DIMENSION D'UN ESPACE VECTORIEL

Familles libres, génératrices, bases

Exercice 28.1. La famille de vecteurs ((1,1,1),(1,0,1),(2,1,1)) est-elle libre dans \mathbb{R}^3 ? Est-ce une famille génératrice de \mathbb{R}^3 ?

Exercice 28.2. La famille de vecteurs ((1,1,1,1),(1,0,1,0),(2,1,1,0)) est-elle libre dans \mathbb{R}^4 ? Est-ce une famille génératrice de \mathbb{R}^4 ?

Exercice 28.3. Démontrer que la famille de polynômes (X-2, 2X+3) est une base de $\mathbf{R}_1[X]$.

Exercice 28.4. On considère a = (1, i, -1, -i), b = (0, 1 + i, 2i, i - 1) et c = (1, 1, 1, 1). Prouver que (a, b, c) est une famille liée dans le ${f C}$ -espace vectoriel ${f C}^4$ et une famille libre dans le ${f R}$ -espace vectoriel ${f C}^4$.

Exercice 28.5. Introduisons les fonctions f, g et h définies sur \mathbf{R} :

$$f: x \longmapsto e^x, \qquad g: x \longmapsto e^{2x}, \qquad h: x \longmapsto e^{3x}.$$

Démontrer que la famille (f, g, h) est une famille libre dans l'espace vectoriel $\mathbb{R}^{\mathbb{R}}$.

Exercice 28.6. Dans $\mathbb{R}^{\mathbb{R}}$, dire si les familles suivantes sont libres.

1.
$$\mathcal{F}_1 = (f_k : x \longmapsto e^{x+k})_{1 \le k \le 100};$$

$$2. \quad \mathcal{F}_2 = \left(g_k : x \longmapsto e^{kx}\right)_{1 \leqslant k \leqslant 100}.$$

Exercice 28.7. Soit $m \in \mathbb{N}$. On note, pour tout $i \in [0, m]$, $f_i : x \longmapsto \sin(2^i x)$. Pour les familles de $\mathcal{F}(\mathbf{R}, \mathbf{R})$ ci-dessous, dites si elles sont libres ou liées.

1. $\mathcal{F}_1 = (\cos, \sin, \exp)$;

- **2.** $\mathcal{F}_2 = (\text{ch}, \text{sh}, \text{exp}) ;$
- 3. $\mathcal{F}_3 = (\cos, \sin, f : x \longmapsto \cos(x + \pi/4));$
- **4.** $\mathcal{F}_{4,m} = (f_0, f_1, \dots, f_m).$

Exercice 28.8. Déterminer une famille génératrice, puis une base de chacun des sous-espaces vectoriels suivants.

- 1. $E = \{(x, y, z, t) \in \mathbf{R}^4 \mid 3x + y = 0 \text{ et } x + t = 0\};$ 2. $F = \{P \in \mathbf{R}_2[X] \mid \widetilde{P}(1) = 0\}.$

Exercice 28.9. On considère l'ensemble

$$F = \left\{ P \in \mathbf{C}_4[X] \mid \widetilde{P}(-1) = \widetilde{P}(1) = 0 \right\}.$$

Montrer que F est un sous-espace vectoriel de $C_4[X]$, en donner une base et sa dimension.

Exercice 28.10. Considérons les ensembles

$$E = \{(x, y, z) \in \mathbf{R}^3 \mid x + y - 4z = 0\} \quad \text{et} \quad F = \{(x, y, z) \in \mathbf{R}^3 \mid x + y + z = 0 \text{ et } 2x - y + z = 0\}.$$

Montrer que E et F sont des espaces vectoriels de dimension finie et en déterminer une base.

Exercice 28.11. Dans \mathbb{R}^4 , on considère les vecteurs

$$x = (1, 0, 0, 1), \quad y = (1, -1, 0, 1), \quad z = (1, 0, 1, 1), \quad t = (1, 1, 1, 1).$$

- 1. Montrer que la famille (x, y, z, t) est une famille liée.
- **2.** La famille (x, y, z) peut-elle être complétée en une base de \mathbb{R}^4 ?
- **3.** Compléter la famille (x, y, z) en une base de \mathbb{R}^4 .

Exercice 28.12. 1. Démontrer que, dans $\mathbf{R}[X]$, la famille de polynômes $(X^3 + 2X - 1, X + 1, X^3 - X^2)$ est une famille libre.

- **2.** Cette famille est-elle une base de $\mathbf{R}_3[X]$?
- **3.** La compléter en une base de $\mathbf{R}_3[X]$.

Exercice 28.13. 1. Montrer que le triplet $\mathcal{B} = ((0,1,1),(2,0,-1),(2,1,1))$ est une base de \mathbb{R}^3 .

2. Donner les coordonnées des vecteurs (4, -1, 1) et (1, 0, 0) dans cette base.

Exercice 28.14. Dans $\mathbf{R}_4[X]$, montrer que la famille $(1, (X-1), (X-1)^2, (X-1)^3, (X-1)^4)$ est une base et déterminer les coordonnées de $P = 1 + X + X^2 + X^3 + X^4$ dans cette base.

Exercice 28.15. On note F l'ensemble des fonctions $f: \mathbf{R} \longrightarrow \mathbf{R}$ telles qu'il existe $(a, b, c) \in \mathbf{R}^3$ vérifiant, pour tout réel $x, f(x) = ae^x + be^{2x} + ce^{x^2}$.

Montrer que F est un \mathbf{R} -espace vectoriel de dimension finie et en déterminer une base.

Exercice 28.16. Soit $n \in \mathbb{N}^*$. Pour tout $k \in [0, n]$, on pose $e_k = \sum_{\ell=0}^k X^{\ell}$.

- 1. Démontrer que $(e_k)_{k \in [0,n]}$ est une base de $\mathbf{R}_n[X]$.
- 2. Soit $k \in [0, n]$. Déterminer les coordonnées du polynôme $P_k = X^k$ dans cette base.

Exercice 28.17. Soit $n \in \mathbb{N}^*$. On considère n+1 réels x_0, x_1, \ldots, x_n vérifiant $x_0 < x_1 < \cdots < x_n$. De plus, on note :

$$\forall i \in [0, n], \quad P_i = \prod_{\substack{k=0 \ k \neq i}}^n (X - x_k).$$

- **1.** Soit $i \in [0, n]$. Pour $k \in [0, n]$, vérifier que $P_i(x_i) = 0$ si $j \neq i$ et $P_i(x_i) \neq 0$.
- **2.** En déduire que la famille $(P_0,...,P_n)$ est une famille libre de $\mathbf{R}_n[X]$. Est-elle génératrice?

Sommes, sommes directes et sous-espaces supplémentaires

Exercice 28.18. Dans \mathbb{R}^4 , on considère les vecteurs

$$x=(1,2,0,1), \qquad y=(2,1,3,1), \qquad z=(7,8,9,5)$$

$$t=(1,2,1,0), \qquad u=(2,-1,0,1), \qquad v=(-1,1,1,1), \qquad w=(1,1,1,1).$$

Posons

$$A = \text{Vect}(x, y, z)$$
 et $B = \text{Vect}(t, u, v, w)$.

- 1. Déterminer la dimension et une base de A et de B.
- **2.** Déterminer la dimension et une base de A + B.
- **3.** Déterminer la dimension et une base de $A \cap B$.

Exercice 28.19. Montrer que F = Vect((1,2,1),(0,1,1)) et G = Vect((0,1,0)) sont supplémentaires dans \mathbb{R}^3 .

Exercice 28.20. Dans le C-espace vectoriel C^3 , on considère les sous-espaces vectoriels :

$$F = \{(x, y, z) \in \mathbf{C}^3 \mid x + iy - z = 0\} \quad \text{et} \quad G = \{(a + ib, a - ib, a + b) : (a, b) \in \mathbf{C}^2\}.$$

Déterminer une base de F, une base de G, une base de F+G et une base de $F\cap G$.

Exercice 28.21. Déterminer un supplémentaire dans \mathbb{R}^4 de

$$E = \{ (x, y, z, t) \in \mathbf{R}^4 \mid x + y - t = 0 \text{ et } y - z + t = 0 \}.$$

Exercice 28.22. Montrer que l'ensemble

$$F = \left\{ P \in \mathbf{R}_4[X] \mid \widetilde{P}(1) = \widetilde{P'}(1) = \widetilde{P'}(0) = 0 \right\}$$

est un sous-espace vectoriel de $\mathbf{R}_4[X]$ et en donner une base, sa dimension et un supplémentaire dans $\mathbf{R}_4[X]$.

Exercice 28.23. On pose

$$F = \left\{ \begin{pmatrix} a & 2a+b \\ -b & -a \end{pmatrix} \in \mathcal{M}_2(\mathbf{R}) \ : \ (a,b) \in \mathbf{R}^2 \right\} \quad \text{et} \quad G = \left\{ \begin{pmatrix} a & 3a+b \\ -b & -2a+b \end{pmatrix} \in \mathcal{M}_2(\mathbf{R}) \ : \ (a,b) \in \mathbf{R}^2 \right\}.$$

Prouver que $\mathcal{M}_2(\mathbf{R}) = F \oplus G$.

Exercice 28.24. Déterminer un supplémentaire de $F = \left\{ P \in \mathbf{R}_3[X] \mid \widetilde{P}(0) = \widetilde{P}'(1) = 0 \right\}$ dans $\mathbf{R}_4[X]$.

Exercice 28.25. Déterminer un supplémentaire de $F = \{ P \in \mathbf{R}_4[X] \mid P(-X) = P(X) \}$ dans $\mathbf{R}_4[X]$.

Exercice 28.26. Dans $E = \mathbb{R}^4$, on considère a = (1, 2, 0, 1), b = (2, 1, 3, -1), c = (4, 5, 3, 1) et F = Vect(a, b, c).

- 1. Déterminer la dimension et une base de F. Déterminer un système d'équations de F.
- 2. Soit $G = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + y + z + t = 0 \text{ et } x + z t = 0\}$. Déterminer une base de G et sa dimension.
- **3.** Montrer que $F \oplus G = E$. Donner la décomposition selon F et G du vecteur s = (6, 10, 8, 2).

Exercice 28.27. Soit D l'ensemble des matrices diagonales de $E = \mathcal{M}_2(\mathbf{R})$ et F le sous-espace vectoriel engendré par les matrices $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Montrer que D et F sont supplémentaires dans E.

Exercice 28.28. Soit F et G deux sous-espaces vectoriels de dimension 3 de \mathbb{R}^5 . Montrer que $F \cap G \neq \{0\}$.

Exercice 28.29. Soit $n \in \mathbb{N}^*$. On note \mathcal{S}_n l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbf{K})$ et \mathcal{A}_n l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbf{K})$.

- 1. Dans cette question n=3.
 - (a) Montrer que S_3 et A_3 sont des sous-espaces vectoriels de $\mathcal{M}_3(\mathbf{K})$. Donner une base et la dimension de chacun d'eux
 - (b) Montrer que S_3 et A_3 sont supplémentaires dans $\mathcal{M}_3(\mathbf{K})$.
- 2. On revient au cas général.
 - (a) Donner sans justification une base et la dimensions de S_n et A_n .
 - (b) Montrer qu'ils sont supplémentaires dans $\mathcal{M}_n(\mathbf{K})$.

Exercice 28.30. Soit E un **K**-espace vectoriel de dimension $n \in \mathbb{N}$ avec $n \geq 3$.

Soit H et H' deux hyperplans de E c'est-à-dire des sous-espace vectoriels de E de dimension n-1.

- 1. Montrer que $\dim(H+H')=n-1$ si, et seulement si, H=H'On suppose désormais que $H\neq H'$.
- **2.** Montrer que H + H' = E.
- **3.** Montrer que $\dim(H \cap H') = n 2$.
- 4. Montrer qu'il existe un sous-espace vectoriel D qui soit un supplémentaire dans E à H et à H'.

Rang d'une famille de vecteurs

Exercice 28.31. Notons $u_1 = (2, -1, -3)$, $u_2 = (-4, 1, 3)$, $u_3 = (-6, 3, 9)$ et $u_4 = (7, 2, 1)$. Quel est le rang de la famille (u_1, u_2, u_3, u_4) ?