Chapitre 12

Ensembles et applications

12.1 Ensembles : rappels et compléments

12.1.1 Compléments sur les opérations

Proposition 12.1 - Lois de Morgan.

Soit E un ensemble, A, B et C des parties de E. Alors :

1.
$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
.

2.
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
.

Démonstration.

Proposition 12.2 - Distributivité entre union, intersection.

Soit E un ensemble, A, B et C des parties de E. Alors :

- **1.** Distributivité de \cup sur \cap . $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- **2.** Distributivité de \cap sur \cup . $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Démonstration. 1. On a

$$\begin{split} A \cup (B \cap C) &= \{x \in E \mid x \in A \text{ ou } (x \in B \text{ et } x \in C)\} \\ &= \{x \in E \mid (x \in A \text{ ou } x \in B) \text{ et } (x \in A \text{ ou } x \in C)\} \\ &= \{x \in E \mid x \in A \text{ ou } x \in B\} \cap \{x \in E \mid x \in A \text{ ou } x \in C\} \\ &= (A \cup B) \cap (A \cup C). \end{split}$$
 par distributivité de ou sur et

2. Très similaire.

Exercice d'application 12.3. Soit E un ensemble, A et B deux parties de E. Montrer que

$$(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B).$$

Définition 12.4 - Ensembles disjoints.

Soit E un ensemble, A et B deux parties de E. A et B sont dites disjointes si $A \cap B = \emptyset$.

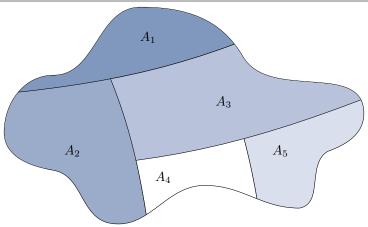
Définition 12.5 - Partition ou recouvrement disjoint d'un ensemble.

Soit E un ensemble, I un ensemble et pour tout $i \in I$, A_i , une partie de E.

On dit que la famille $(A_i)_{i \in I}$ forme une **partition** (on dit aussi **recouvrement disjoint**) de E si

- $\forall i \in I, A_i \neq \emptyset$;
- $\forall (i,j) \in I^2, (i \neq j) \Longrightarrow A_i \cap A_j = \emptyset$ (on dit que les A_i sont **deux à deux disjoints**);
- $\bigcup_{i \in I} A_i = E$ (on dit que $(A_i)_{i \in I}$ est un **recouvrement** de E).

Exemple de partition d'un ensemble en sous-ensembles A_1 , A_2 , A_3 , A_4 , A_5



Exemple 12.6. Notons A l'ensemble des nombres pairs et B l'ensemble des nombres impairs. A et B forment une partition de \mathbf{Z} (l'intersection des deux ensembles est vide et l'union des deux ensembles est \mathbf{Z}).

Exemple 12.7. On note E = [1, 6], $A = \{1, 3, 6\}$, $B = \{1, 2, 4, 5\}$ et $C = \{2, 4, 5\}$.

- **1.** $\{A, B\}$ n'est pas une partition de E, car $1 \in A \cap B$ (donc $A \cap B \neq \emptyset$).
- **2.** $\{B,C\}$ n'est pas une partition de E, car $3 \notin B \cup C$ (donc $A \cup B \neq E$).
- **3.** $\{A,C\}$ est une partition de E, car aucun élément de E n'appartient à la fois à A et C, et chaque élément de E appartient soit à A, soit à C.

Exercice d'application 12.8. On considère l'ensemble E de toutes les cartes d'un jeu de 32 cartes. On note A l'ensemble des rois et B l'ensemble des cœurs.

- 1. $\{A, \overline{A}, B\}$ est-t-il une partition de E?
- **2.** $\{A, B\}$ est-t-il une partition de E?
- **3.** $\{A, \overline{A}\}$ est-t-il une partition de E?

4. Trouver une nouvelle partition de E.

Proposition 12.9 - Un ensemble et son complémentaire forment une partition.

Soit E un ensemble et A une partie de E non vide et distincte de E. Alors $\{A, \overline{A}\}$ est une partition de E.

Démonstration.

Exercice d'application 12.10. $\stackrel{\text{\tiny iii}}{\rhd}$ Pour tout $\theta \in [0; \pi[$, on note $A_{\theta} = \{e^{i\theta}, e^{i(\theta+\pi)}\}$. L'objectif est de montrer que $(A_{\theta})_{\theta \in [0; \pi[}$ est une partition de \mathbf{U} .

- 1. (a) Soit $\theta, \theta' \in [0; \pi[$ tels que $e^{i\theta} = e^{i\theta'}$. Montrer que $\theta = \theta'$. On admettra pour la suite que si $e^{i\theta} = e^{i(\theta' + \pi)}$ ou $e^{i(\theta + \pi)} = e^{i\theta'}$ ou $e^{i(\theta + \pi)} = e^{i(\theta' + \pi)}$, alors $\theta = \theta'$.
 - (b) Soit $\theta, \theta' \in [0; \pi[$ tels que $A_{\theta} \cap A_{\theta'} \neq \emptyset$. Montrer que $\theta = \theta'$.
- **2.** Montrer que $\bigcup_{\theta \in [0:\pi]} A_{\theta} = \mathbf{U}$.
- 3. Conclure.

12.1.2 Rappels : montrer une égalité d'ensemble

Soit E, F deux ensembles. Pour montrer que $E \subset F$, on rappelle que peut fixer $x \in E$ et montrer qu'alors $x \in F$. Pour montrer que E = F, on peut montrer que $E \subset F$ et $F \subset E$. On peut aussi utiliser des équivalences, et montrer que pour x un élément quelconque, $x \in E \iff x \in F$.

Exercise d'application 12.11. Soit $a, b \in \mathbb{R}$ avec a < b. Montrer que $[a; b] = \{ta + (1 - t)b : t \in [0; 1]\}$.

12.1.3 Ensemble des parties d'un ensemble

Exemple 12.12. Considérons l'ensemble $E = \{ \clubsuit, \diamondsuit, \spadesuit, \heartsuit \}$. On peut écrire $\mathcal{P}(E)$ en extension (cet ensemble compte 16 éléments) :

$$\mathcal{P}(E) = \Big\{ \varnothing, \{\clubsuit\}, \{\diamondsuit\}, \{\spadesuit\}, \{\heartsuit\}, \{\clubsuit, \diamondsuit\}, \{\clubsuit, \spadesuit\}, \{\clubsuit, \heartsuit\}, \{\diamondsuit, \spadesuit\}, \{\diamondsuit, \heartsuit\}, \{\spadesuit, \heartsuit\}, \{\spadesuit, \heartsuit\}, \{\clubsuit, \diamondsuit, \diamondsuit\}, \{\clubsuit, \diamondsuit, \diamondsuit\}, \{\clubsuit, \diamondsuit, \diamondsuit\}, \{\diamondsuit, \spadesuit, \heartsuit\}, \{\diamondsuit, \diamondsuit, \diamondsuit\}, \{\clubsuit, \diamondsuit, \diamondsuit\} \Big\} \Big\}.$$

Exercice d'application 12.13. Écrire l'ensemble $\mathcal{P}(\{0,1\})$ en extension.

Remarque 12.14. Si E est un ensemble qui contient n éléments (avec $n \in \mathbb{N}$), alors $\mathcal{P}(E)$ contient 2^n éléments.

12.2 Applications

Dans toute la suite, E et F désigneront des ensembles.

12.2.1 Définition, restriction, prolongement

Définition 12.15 - Application.

Une application f de E dans F associe à chaque élément x de E un et un seul élément de F, appelé image, et noté f(x).

Si $y \in F$, un antécédent de y par f est un élément x de E tel que y = f(x).

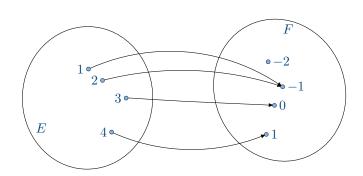
E est appelé ensemble de départ et F ensemble d'arrivée.

On notera $\mathcal{F}(E,F)$ ou F^E l'ensemble des applications de E dans F, et, pour $f \in \mathcal{F}(E,F)$,

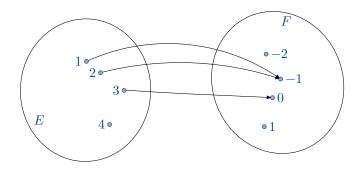
$$\begin{array}{cccc} f: & E & \longrightarrow & F \\ & x & \longmapsto & f(x) \end{array}.$$

Exemple 12.16. Notons E = [1, 4] et F = [-2, 1].

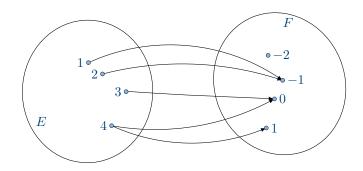
1. Le diagramme suivant (appelé **diagramme sagittal**) correspond à l'application $f: E \longrightarrow F$ définie par f(1) = -1, f(2) = -1, f(3) = 0 et f(4) = 1. Puisque chaque élément de E possède une unique image, f est bien une application. Notons que -2 n'a pas d'antécédent par f, 0 a un unique antécédent par f et -1 a deux antécédents par f.



Le diagramme suivant ne correspond pas à une application de E dans F, car 4 n'a pas d'image.



Le diagramme suivant ne correspond pas à une application, car 4 possède deux images.

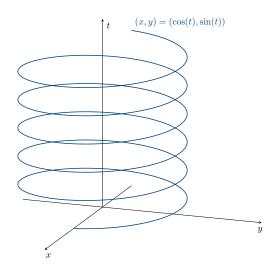


Définition 12.17 - Graphe d'une application.

Soit $f \in \mathcal{F}(E,F)$. Le **graphe** de f est $\{(x,f(x)): x \in E\}$. C'est une partie de $E \times F$.

Exemple 12.18. 1. Le graphe de $f: \mathbb{R} \longrightarrow \mathbb{R}$ est représenté géométriquement par une parabole du plan.

2. Le graphe de l'application $\mathbf{R} \longrightarrow \mathbf{R}^2$ est représenté géométriquement par une spirale de l'espace. $t \longmapsto (\cos(t), \sin(t))$



Définition 12.19 - Deux applications à connaître.

1. On appelle identité de E, notée Id_E , l'application

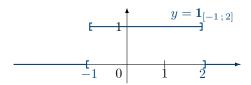
$$\text{Id}_E: \ E \ \longrightarrow \ E \ .$$

$$x \ \longmapsto \ x$$

2. Si $A \subset E$, on appelle **indicatrice** de A, notée $\mathbf{1}_A$ l'application

$$\mathbf{1}_A: \ E \longrightarrow \{0,1\} \\ x \longmapsto \begin{cases} 1 \text{ si } x \in A \\ 0 \text{ si } x \notin A \end{cases}.$$

Exemple 12.20. La courbe représentative de la fonction indicatrice sur [-1; 2] est donnée ci-après :



Il est parfois de utile de changer le domaine de définition d'une application, cela correspond aux notions de prolongement et de restriction.

Définition 12.21 - Restriction d'une application.

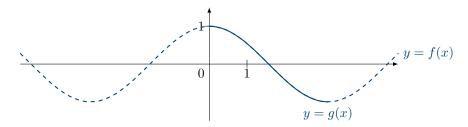
Soit $f \in \mathcal{F}(E, F)$. Soit $A \subset E$. La **restriction** de f à A est l'application $f|_A: A \longrightarrow F$ $x \longmapsto f(x)$.

Définition 12.22 - Prolongement d'une application.

Soit $f \in \mathcal{F}(E, F)$. Soit B un ensemble tel que $E \subset B$. Un **prolongement** de f à B est une application $g: B \longrightarrow F$ telle que $g|_E = f$.

Exemple 12.23. Considérons les applications $f: \mathbf{R} \longrightarrow [-1; 1]$ et $g: [0; \pi] \longrightarrow [-1; 1]$. Alors g est une $x \longmapsto \cos(x)$

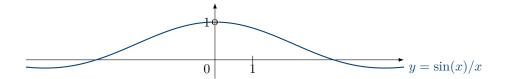
restriction (bijective) de f (qui n'est pas une application bijective). On dit aussi que f est un prolongement de g. On note $g = f|_{[0;\pi]}$.



Exemple 12.24. On pose $g: \mathbf{R}^{\star} \longrightarrow \mathbf{R}$ $x \longmapsto \sin(x)/x$

Alors $g_1: \mathbf{R} \longrightarrow \mathbf{R}$ est un prolongement de g. Cette nouvelle fonction est continue (on $x \longmapsto \begin{cases} \sin(x)/x & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$

étudiera cela plus en détail dans l'année).



12.2.2 Image directe et image réciproque d'une partie par une application

Définition 12.25 - Image directe, image réciproque.

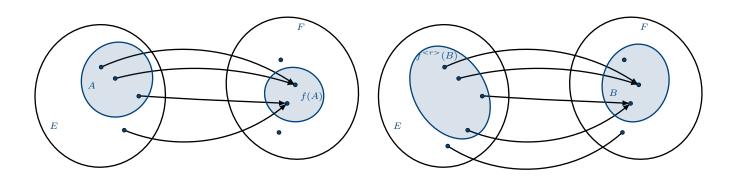
Soit $f: E \longrightarrow F$ une application, A une partie de E et B une partie de F. L'image directe de A par f est l'ensemble des images des éléments de A par f:

$$f(A) = \{ f(x) : x \in A \} = \{ y \in F \mid \exists x \in A, y = f(x) \}.$$

En particulier, pour $y \in F$, on a $y \in f(A) \iff \exists y \in F, \ f(x) = y$. L'**image réciproque** de B par f est l'ensemble des antécédents des éléments de B par f:

$$f^{< r>}(B) = \{x \in E \mid f(x) \in B\}.$$

En particulier, pour $x \in E$, on a $x \in f^{< r>}(B) \iff f(x) \in B$.



Proposition 12.26 - Lien entre A et $f^{< r>}(f(A))$, entre B et $f(f^{< r>}(B))$.

Soit E, F deux ensembles, $f: E \longrightarrow F$ une application, A une partie de E et B une partie de F. Alors

1.
$$A \subset f^{< r>}(f(A));$$

2.
$$f(f^{< r>}(B)) \subset B$$
.

Démonstration.

Remarque 12.27. Les inclusions réciproque sont fausses en général. On voit avec l'illustration précédente que la partie $f^{< r>}(f(A))$ n'est pas incluse dans A (dans la première illustration, $f^{< r>}(f(A)) = E$). De même, $f(f^{< r>}(B))$ n'est pas incluse dans B (dans la deuxième illustration, B contient trois éléments, alors que $f(f^{< r>}(B))$ n'en contient que deux).

Méthode 12.28. Trouver une image réciproque

Trouver l'image réciproque d'un singleton revient souvent à résoudre une équation.

Dans le cas d'une fonction à valeurs réelles, trouver l'image réciproque d'un intervalle revient souvent à résoudre une ou des inéquations.

Méthode 12.29. Trouver une image directe dans le cas d'une fonction continue à valeurs réelles

Dans le cas d'une fonction continue définie sur une partie de \mathbf{R} et à valeurs réelles, appliquer le théorème de la bijection (une ou plusieurs fois) peut parfois permettre de déterminer une image directe.

ATTENTION

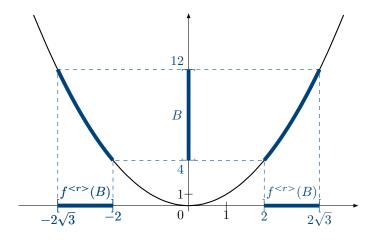
l Cette méthode n'est valable que pour des fonctions définies sur une partie de ${\bf R}$ et à valeurs dans ${\bf R}!$

Exemple 12.30. On considère la fonction g définie sur \mathbf{R} par $g(x) = x^2$.

1. Déterminons l'image réciproque de [4; 12] par f. Soit $x \in \mathbf{R}$.

$$\begin{split} x \in f^{< r>}([4\,;\,12]) &\Longleftrightarrow f(x) \in [4\,;\,12] \\ &\Longleftrightarrow 4 \leqslant x^2 \leqslant 12 \\ &\Longleftrightarrow -2\sqrt{3} \leqslant x \leqslant -2 \text{ ou } 2 \leqslant x \leqslant 2\sqrt{3}. \end{split}$$

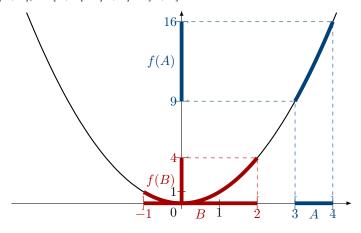
Donc $f^{< r>}([4; 12]) = [-2\sqrt{3}; -2] \cup [2; 2\sqrt{3}].$



2. Déterminons les images directes de [3; 4] et]-1; 2] par f.

Puisque g est strictement croissante et continue sur [3; 4], le théorème de la bijection assure que g([3; 4]) = [g(3); g(4)] = [9; 16].

Puisque g est strictement décroissante sur]-1; 0] et continue, le théorème de la bijection assure que g(]-1; 0]) = [0; 1[. De même, g(]0; 2]) =]0; 4[. Avec la proposition précédente, on en déduit que $g(]-1; 2]) = g(]-1; 0] \cup [0; 2]) = g(]-1; 0]) \cup g(]0; 2]) = [0; 1[\cup]0; 4] =]0; 4[$.



Exercice d'application 12.31. Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$. Déterminer $f^{< r>}(\{i\})$.

Exercice d'application 12.32. Soit $f: x \longmapsto 2x^2 + \ln(x)$. Déterminer $f([1; +\infty[)$.

Exercice d'application 12.33. Soit $f: [0,7] \longrightarrow \{0;1\}$ et $A=\{0;2;4\}$. Déterminer f(A) et $f^{< r>}(\{1\})$.

Exemple 12.34 ($\stackrel{\text{\tiny in}}{\hookrightarrow}$). Soit $A \in \mathcal{P}(E)$. On a $\mathbf{1}_A^{< r>}(\{1\}) = A$ et $\mathbf{1}_A^{< r>}(\{0\}) = \overline{A}$.

Proposition 12.35 - Inclusion et image directe, réciproque.

Soit f une application de E dans F.

- Soit A et A' des parties de E telles que $A \subset A'$. Alors $f(A) \subset f(A')$.
- Soit B et B' des parties de F telles que $B \subset B'$. Alors, $f^{< r>}(B) \subset f^{< r>}(B')$.

Démonstration.

Exercice d'application 12.36. $\stackrel{\text{\tiny iii}}{\rhd}$ Soit E, F deux ensembles, $f: E \longrightarrow F$, soit A, A' deux parties de E. Montrer que $f(A \cup A') = f(A) \cup f(A')$.

Définition 12.37 - Ensemble image.

Si $f \in \mathcal{F}(E, F)$, on appelle **ensemble image** de f, noté f(E) ou Im(f), l'ensemble des valeurs prises par

$$f(E) = \text{Im}(f) = \{ y \in F \mid \exists x \in E, y = f(x) \} = \{ f(x) : x \in E \}.$$

Exemple 12.38. On considère $f: \mathscr{C}^1(\mathbf{R},\mathbf{R}) \longrightarrow \mathcal{F}(\mathbf{R},\mathbf{R})$. Montrons que $\mathrm{Im}(f) = \mathscr{C}^0(\mathbf{R},\mathbf{R})$, où $\mathscr{C}^0(\mathbf{R},\mathbf{R})$ désigne l'ensemble des fonctions continues de \mathbf{R} dans \mathbf{R} .

Soit $v \in \mathscr{C}^0(\mathbf{R}, \mathbf{R})$. Puisque v est continue, le théorème fondamental de l'analyse assure qu'il existe $u \in \mathcal{F}(\mathbf{R}, \mathbf{R})$ dérivable telle que u' = v (u est une primitive de v). Or v est continue, donc u' = v est également continue, et ainsi $u \in \mathscr{C}^1(\mathbf{R}, \mathbf{R})$. Ainsi la relation f(u) = v entraı̂ne $v \in f(\mathscr{C}^1(\mathbf{R}, \mathbf{R}))$. On vient de montrer que $\mathscr{C}^0(\mathbf{R}, \mathbf{R}) \subset \mathrm{Im}(f)$.

L'inclusion réciproque est trivialement vraie car la dérivée d'une fonction de classe \mathscr{C}^1 est continue par définition.

Exemple 12.39. Déterminons l'image de
$$f: \mathbb{R} \setminus \{3\} \longrightarrow \mathbb{R}$$
 .
$$x \longmapsto \frac{2x+3}{x-3}$$

Soit $y \in \mathbf{R}$.

$$y \in \operatorname{Im}(f) \Longleftrightarrow \exists x \neq 3, \ \frac{2x+3}{x-3} = y \Longleftrightarrow \exists x \neq 3, \ x(y-2) = 3+3y$$

Cette dernière équation admet une solution si et seulement si $y \neq 2$, donc $\text{Im}(f) = \mathbb{R} \setminus \{2\}$.

Exercice d'application 12.40. Déterminer l'image de
$$f: \mathbf{R} \longrightarrow \mathbf{R}$$
 . $x \longmapsto x^2$

Exercice d'application 12.41. Déterminer l'image de $f: \mathbf{R} \longrightarrow \mathbf{C}$ $\theta \longmapsto e^{i\theta}$

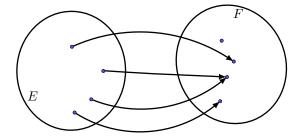
12.2.3 Injectivité, surjectivité, bijectivité

Définition 12.42 - Injectivité, surjectivité, bijectivité.

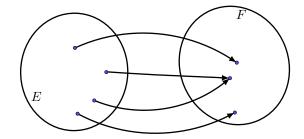
Soit $f: E \longrightarrow F$ une application.

- ullet est **injective** si l'une des conditions équivalentes suivantes est vraie :
 - (i) tout élément de F a au plus un antécédent par f;
 - (ii) pour tout $y \in F$, l'équation f(x) = y d'inconnue $x \in E$ admet au plus une solution;
 - (iii) $\forall (x, x') \in E^2$, $f(x) = f(x') \implies x = x'$.
- \bullet f est surjective si l'une des conditions équivalentes suivantes est vraie :
 - (i) tout élément de F a au moins un antécédent par f;
 - (ii) pour tout $y \in F$, l'équation f(x) = y d'inconnue $x \in E$ admet au moins une solution;
 - (iii) $\forall y \in F, \exists x \in E, \quad f(x) = y.$
- f est **bijective** si f est à la fois injective et surjective, c'est-à-dire si l'une des conditions équivalentes suivantes est vraie :
 - (i) tout élément de F a exactement un antécédent par f;
 - (ii) pour tout $y \in F$, l'équation f(x) = y d'inconnue $x \in E$ admet exactement une solution;
 - (iii) $\forall y \in F, \exists ! x \in E, \quad f(x) = y.$

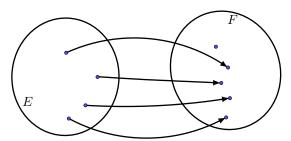
Application non injective, non surjective



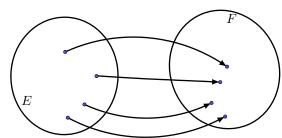
Application non injective, surjective



Application injective, non surjective



Application bijective

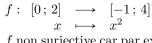


Exemple 12.43 (\heartsuit). La fonction $x \mapsto x^2$, suivant les ensembles de départ et d'arrivée choisi, peut avoir toutes les propriétés possibles!

Application non injective, non surjective

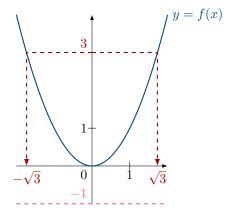
$$\begin{array}{ccc} f: & [-2\,;\,2] & \longrightarrow & [-1\,;\,4] \\ & x & \longmapsto & x^2 \end{array}$$

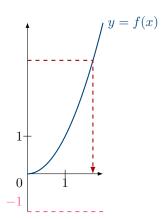
f non surjective car par exemple -1 n'a pas d'antécédent et f non injective car par exemple 3 a deux antécédents.



Application injective, non surjective

f non surjective car par exemple -1 n'a pas d'antécédent et f injective (tous les éléments de l'ensemble d'arrivée [-1; 4] ont au plus un antécédent dans [0; 2]).





Application non injective, surjective

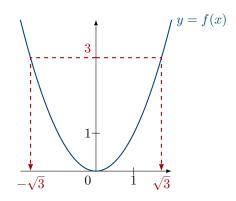
$$\begin{array}{cccc} f: & [-2\,;\,2] & \longrightarrow & [0\,;\,4] \\ & x & \longmapsto & x^2 \end{array}$$

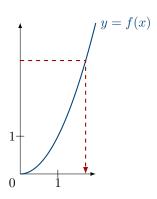
f surjective (tous les éléments de l'ensemble d'arrivée $[0\,;\,4]$ ont au moins un antécédent par f et f non injective car par exemple 3 a deux antécédents.

Application bijective

$$\begin{array}{ccc} f: & [0\,;\,2] & \longrightarrow & [0\,;\,4] \\ & x & \longmapsto & x^2 \end{array}$$

f est bijective (tous les éléments de l'ensemble d'arrivée $[0\,;\,4]$ ont exactement un antécédent dans $[0\,;\,2]).$





Exemple 12.44. Considérons la fonction $f: \mathbf{R}_+ \longrightarrow \mathbf{R}_+ \ x \longmapsto x^2$.

• Injectivité.

o Méthode 1. Soit $x,x'\in\mathbf{R}_+$ tel que f(x)=f(x'). On a

$$x^2 = (x')^2$$
 donc $\sqrt{x^2} = \sqrt{(x')^2}$
donc $|x| = |x'|$
donc $x = x'$

on compose par la racine carrée

$$\operatorname{car} x \geqslant 0$$
, donc $|x| = x$; de même $|x'| = x'$

Ainsi, f est injective. Notons qu'on a raisonné par implications (avec des « donc ») et non par équivalences! On ne cherche pas à résoudre une équation ici, mais à établir l'égalité x=x'.

o Méthode 2. Soit $y \in \mathbf{R}_+$. Soit $x \in \mathbf{R}_+$. On résout :

$$f(x) = y \iff x^2 = y$$

 $\iff x = \sqrt{y} \text{ ou } x = -\sqrt{y}$
 $\iff x = \sqrt{y}$
 $\operatorname{car} y \ge 0$
 $\operatorname{car} x \ge 0$

Donc f est injective car, pour toute valeur de y, l'équation f(x) = y admet au plus une solution.

• Surjectivité. Soit $y \in \mathbf{R}_+$. En procédant comme avant, on a

$$f(x) = y \iff x = \sqrt{y}.$$

Donc f est surjective car, pour toute valeur de y, l'équation f(x) = y admet au moins une solution.

• Bijectivité. L'application est bijective car elle est injective et surjective (ce qui revient à dire que l'équation f(x) = y admet une unique solution pour tout $y \in \mathbf{R}_{+}$).

Exercice d'application 12.45. Déterminer si les applications suivantes sont injectives, surjectives, bijectives (sans preuve).

1.
$$f: \left[0; \frac{\pi}{2}\right] \longrightarrow \left[0; 2\right]$$
 $x \longmapsto \sin(x)$

Exercice d'application 12.46. Soit $H = \{ z \in \mathbb{C} \mid \Im m(z) > 0 \}$ et $f : H \longrightarrow \mathbb{C}$. Montrer que f est injective. $z \longmapsto \frac{z-i}{z+i}$

Exemple 12.47 ($\stackrel{\text{\tiny iii}}{\smile}$). L'application $\Psi: \mathbf{R} \longrightarrow \mathcal{P}(\mathscr{C}^1(\mathbf{R},\mathbf{R}))$ $a \longmapsto \left\{ f \in \mathscr{C}^1(\mathbf{R},\mathbf{R}) \mid f' + af = 0 \right\}$ est injective mais pas surjective.

• Montrons l'injectivité. Soit $a, b \in \mathbf{R}$ tels que $\Psi(a) = \Psi(b)$.

$$\Psi(a) = \left\{ f \in \mathscr{C}^1(\mathbf{R}, \mathbf{R}) \mid f' + af = 0 \right\} \quad \text{et} \quad \Psi(b) = \left\{ f \in \mathscr{C}^1(\mathbf{R}, \mathbf{R}) \mid f' + bf = 0 \right\}.$$

Considérons $f: t \longrightarrow e^{-at}$. Alors $f \in \Psi(a)$. Puisque $\Psi(a) = \Psi(b)$, alors $f \in \Psi(b)$. Ainsi, f' + af = 0 = f' + bfpuis $(a-b)e^{-at}=0$ puis a-b=0 (car $e^{-at}\neq 0$) donc a=b. Ainsi, Ψ est injective.

• Montrons que Ψ n'est pas surjective. Considérons $A = \{ \mathrm{Id}_{\mathbf{R}} \}$. Puisque $\mathrm{Id}_{\mathbf{R}}$ est de classe \mathscr{C}^1 , $A \in \mathcal{P}(\mathscr{C}^1(\mathbf{R},\mathbf{R}))$. Pour tout $a \in \mathbb{R}$, , $\mathrm{Id}'_{\mathbb{R}} + a\mathrm{Id}_{\mathbb{R}} = 1 + a\mathrm{Id}_{\mathbb{R}}$ n'est pas la fonction nulle. Ainsi, A n'a pas d'antécédent par Ψ , ce qui prouve que Ψ n'est pas surjective.

Méthode 2. On aurait pu aussi remarquer que, pour tout $a \in \mathbf{R}$, $\Psi(a) = \{t \longmapsto \lambda e^{-at} : \lambda \in \mathbf{R}\}$, donc $\Psi(a)$ contient une infinité d'éléments quel que soit $a \in \mathbb{R}$. Or {Id} (ou \emptyset , etc.) ne contient pas une infinité d'éléments, donc il n'existe pas de a réel tel que $\Psi(a) = \{ \text{Id} \}.$

Proposition 12.48 - Lien entre surjectivité et image d'une application.

Soit $f: E \longrightarrow F$. La fonction f est surjective si et seulement f(E) = F.

Démonstration.

Méthode 12.49. Cas des fonctions définies sur une partie de R à valeurs réelles

Soit E, F deux parties de \mathbf{R} et $f: E \longrightarrow F$.

- 1. Injectivité de f. Si f est strictement monotone, alors f est injective.
- **2.** Surjectivité de f. Si f est continue, l'utilisation du théorème de la bijection peut permettre de déterminer f(E). Si f(E) = F, alors on peut conclure que f est surjective.

ATTENTION

Cette méthode n'est valable que pour des fonctions définies sur une partie de ${\bf R}$ et à valeurs dans une partie de ${\bf R}$!

 $D\'{e}monstration$ \heartsuit .

Exercice d'application 12.50. Montrer que $f: [0; 1] \longrightarrow [0; 3\pi]$ est injective mais non surjective. $x \longmapsto \operatorname{Arcsin}(x) + \sqrt{x}$

12.2.4 Composition d'applications

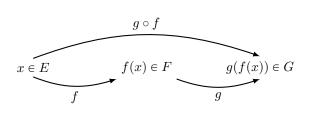
Définition 12.51 - Composée de deux applications.

Soient E, F et G trois ensembles, $f: E \longrightarrow F$ et $g: F \longrightarrow G$. On appelle **application composée** de f par g l'application

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

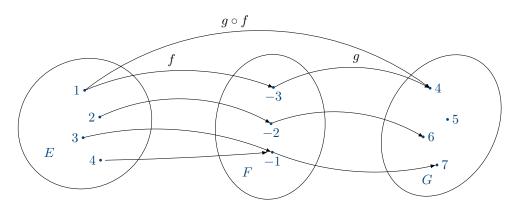
 $g \circ f$ se lit « g rond f ».



Remarque 12.52. Si E, F, G et H sont quatre ensembles, $f \in \mathcal{F}(E, F)$ et $g \in \mathcal{F}(G, H)$, on autorise la composition $g \circ f : E \longrightarrow H$ si $g(F) \subset G$.

ATTENTION \bigcirc Soit f,g deux applications définies sur un ensemble E et à valeurs dans E. On n'a pas en général la relation

Exemple 12.53. Considérons E = [1, 4], F = [-3, -1] et G = [4, 7], ainsi que les applications $f : E \longrightarrow F$ et $g: F \longrightarrow G$ définies par f(1) = -3, f(2) = -2, f(3) = -1, f(4) = -1 et g(-3) = 4, g(-2) = 6, g(-1) = 7.



On a alors $g \circ f : [1, 4] \longrightarrow [4, 7]$ définie par $(g \circ f)(1) = g(f(1)) = g(-3) = 4$. De même, $(g \circ f)(2) = 6$, $(g \circ f)(3) = 7$ et $(g \circ f)(4) = 7$.

Exemple 12.54. Notons $f:]0; +\infty[\longrightarrow]0; +\infty[$ et $g:]0; +\infty[\longrightarrow \mathbf{R}$. On a $x \longmapsto \frac{1}{x}$

$$g \circ f: \mathbf{R}_{+}^{\star} \longrightarrow \mathbf{R}$$

$$x \longmapsto \ln\left(\frac{1}{x}\right)$$

(pour déterminer l'expression de $g \circ f$, on peut écrire $(g \circ f)(x) = g(f(x)) = g\left(\frac{1}{x}\right) = \ln\left(\frac{1}{x}\right)$).

Par contre, la composée $f \circ g$ n'existe pas (on ne devrait même pas l'écrire!). En effet, si x = 1, $g(x) = \ln(1) = 0$, et cette valeur n'appartient pas au domaine de définition de f (on ne peut donc pas calculer f(g(x)); encore une fois, écrire f(q(x)) constitue une erreur de rédaction puisque ce nombre n'existe pas!).

Exercice d'application 12.55. Notons $f: \mathbf{R} \longrightarrow \mathbf{R}$ et $g: \mathbf{R} \longrightarrow \mathbf{R}$. Donner les expressions de $f \circ g$ $x \longmapsto x+1$ $x \longmapsto x^2$ et $g \circ f$, puis calculer $(f \circ g)(1)$ et $(g \circ f)(1)$. A-t-on $g \circ f = f \circ g$?

Proposition 12.56 - Opérations sur les composées.

Soient E, F, G et H des ensembles, $f: E \longrightarrow F, g: F \longrightarrow G$ et $h: G \longrightarrow H$.

- 1. Le neutre de la composition est la fonction identité : $f \circ Id_E = f$ et $Id_F \circ f = f$.
- **2.** La composition est associative : $(h \circ g) \circ f = h \circ (g \circ f)$.

Démonstration.

Proposition 12.57 - Composée d'applications injectives, surjectives, bijectives.

Soit E, F, G trois ensembles, $f: E \longrightarrow F$ et $g: F \longrightarrow G$.

- **1.** Si f et g sont injectives, alors $g \circ f$ est injective. Inversement, si $g \circ f$ est injective, alors f est injective.
- **2.** Si f et g sont surjectives, alors $g \circ f$ est surjective. Inversement, si $g \circ f$ est surjective, alors g est surjective.
- **3.** Si f et g sont bijectives, alors $g \circ f$ est bijective. Inversement, si $g \circ f$ est bijective, alors f est injective et g est surjective.

Démonstration.

TTENTION

Il n'y a pas de réciproque à cette propriété. Les propriétés d'une composée ne se transmettent pas aux fonctions qui la composent. Par exemple, on peut avoir $g \circ f$ bijective sans que ni g ni f ne le soit (voir l'exemple qui suit).

Exemple 12.58. Soit $f: \mathbb{N} \longrightarrow \mathbb{N}$ et $g: \mathbb{N} \longrightarrow \mathbb{N}$. On a $g \circ f = \mathrm{Id}_{\mathbb{N}}$, donc en particulier $g \circ f$ est $n \longmapsto 2n$ $n \mapsto \left\lfloor \frac{n}{2} \right\rfloor$.

bijective. Pour tant, f et g ne le sont pas (f n'est pas surjective car g n'est pas d'antécédent par g; g n'est pas injective car g(0) = 0 = g(1), donc g a deux antécédents par g.

Définition 12.59 - Composition itérée.

Soit $u: E \longrightarrow E$, $n \in \mathbb{N}^*$. On peut composer u n fois avec elle-même et on note u^n le résultat. Plus précisément, on convient que $u^0 = \mathrm{Id}_E$ et on construit les itérées successivement grâce la relation de récurrence :

$$\forall n \in \mathbf{N}, \quad u^{n+1} = u^n \circ u.$$

Plus simplement, on a:

$$u^n = \underbrace{u \circ u \circ \cdots \circ u}_{n \text{ fois}}.$$

Exercice d'application 12.60. Soit $f: [0;1] \longrightarrow [0;1]$. $x \longmapsto \frac{x}{x+1}$

- **1.** Justifier que f est bien définie, ce qui signifie que [0;1] est inclus dans le domaine de définition de $x \mapsto \frac{x}{x+1}$ et que pour tout $x \in [0;1]$, $f(x) \in [0;1]$.
- **2.** Soit $n \in \mathbb{N}$. Déterminer l'expression de f^n .

12.2.5 Bijection réciproque d'une application bijective

Définition 12.61 - Bijection réciproque.

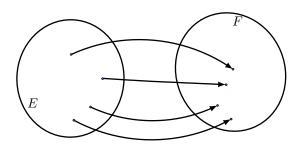
Si $f: E \longrightarrow F$ est une application bijective, on peut définir l'application f^{-1} , appelée bijection réciproque de f et définie de F dans E par :

$$f^{-1}:\ F\ \longrightarrow\ E$$

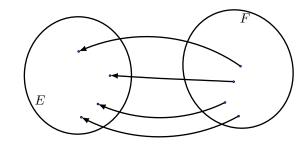
$$y\ \longmapsto\ f^{-1}(y)=\text{l'unique antécédent de }y\text{ par }f$$

Autrement dit,

$$\forall y \in F, \ \forall x \in E, \ f^{-1}(y) = x \Longleftrightarrow y = f(x).$$



Représentation de f



Représentation de f^{-1}

Exemple 12.62 (\heartsuit). **1.** Pour tout ensemble E, la réciproque de Id_E est elle-même.

3. $\overset{\text{\tiny 10}}{\smile}$ Notons $\mathscr{C}^1_0(\mathbf{R}) = \{ f \in \mathscr{C}^1(\mathbf{R}) \mid f(0) = 0 \}$ (l'ensemble des fonctions de classe \mathscr{C}^1 qui s'annulent en 0). La réciproque de $\mathscr{C}^1_0(\mathbf{R}) \longrightarrow \mathscr{C}^0(\mathbf{R})$ est $\mathscr{C}^0(\mathbf{R}) \longrightarrow \mathscr{C}^1_0(\mathbf{R})$. $f \longmapsto f' \qquad \qquad f \longmapsto \begin{bmatrix} \mathbf{R} \longrightarrow \mathbf{R} \\ x \longmapsto \int_0^x f(t) \, \mathrm{d}t \end{bmatrix}$

Exercice d'application 12.63. Démontrer que $f: \mathbf{R} \longrightarrow \mathbf{R}_+^{\star}$ est bijective, et déterminer son application réciproque.

-

Proposition 12.64 - Composée d'une fonction avec sa réciproque.

Soit $f \in \mathcal{F}(E, F)$ une application bijective. Alors

$$f \circ f^{-1} = \operatorname{Id}_F \quad \text{et} \quad f^{-1} \circ f = \operatorname{Id}_E.$$

 $D\'{e}monstration.$

Proposition 12.65 - Caractérisation de la bijectivité avec la composition.

Soit $f:E\longrightarrow F$ une application. S'il existe $g:F\longrightarrow E$ telle que

$$g \circ f = \mathrm{Id}_E$$
 et $f \circ g = \mathrm{Id}_F$.

alors f est bijective et $f^{-1} = g$.

 $D\'{e}monstration.$

Cette proposition fournit une nouvelle méthode pour déterminer si une application est bijective : si on arrive à déterminer (deviner) directement une application que l'on pense être la réciproque de f, on introduit celle-ci, que l'on note g par exemple (ne surtout pas la noter f^{-1} tant qu'on n'a pas prouvé que f est bijective) et on vérifie que $f \circ g = \operatorname{Id}_f$ et que $g \circ f = \operatorname{Id}_E$.

Exercice d'application 12.66. Justifier que $f: \mathbf{R}_+ \longrightarrow \mathbf{R}_+$ est bijective. $x \longmapsto x^2$

Proposition 12.67 - Opérations avec la réciproque.

• Si f est une bijection de E dans F et si g est une bijection de F dans G, alors $g \circ f$ est une bijection de E dans G et on a :

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

 $\bullet\,$ Si f est une bijection de E dans F, alors sa bijection réciproque f^{-1} est aussi bijective et :

$$(f^{-1})^{-1} = f.$$

Démonstration.

Proposition 12.68 - Lien entre $f^{-1}(B)$ et $f^{< r>}(B)$.

Soit $f: E \longrightarrow F$ une application bijective, B une partie de F. Alors

$$f^{-1}(B) = f^{< r >}(B).$$

Démonstration.

Remarque 12.69. Dans la proposition précédente, $f^{-1}(B)$ désigne l'image directe de l'ensemble B par l'application f^{-1} , tandis que $f^{< r>}(B)$ désigne l'image réciproque de l'ensemble B par f.

En pratique, on ne note pas $f^{< r>}(B)$ l'image réciproque de B, mais plutôt $f^{-1}(B)$ (ce qui est légitime si f est bijective d'après la proposition précédente). On n'utilisera donc plus la notation $f^{< r>}$, mais plutôt f^{-1} .

ATTENTION 🕏

On peut écrire $f^{-1}(B)$ même si l'application f n'est pas bijective (il est toujours possible de déterminer l'image réciproque d'un ensemble). Ainsi, écrire $f^{-1}(B)$ ne signifie pas que f est bijective!

12.2.6 Famille d'éléments indexée par un ensemble

Définition 12.70 - Famille d'éléments indexée par un ensemble.

Soit X un ensemble et I un ensemble (d'indices). Une **famille** d'éléments de X indexée par I est une application de I dans X. On note une telle famille $(x_i)_{i \in I}$.

L'idée derrière cette définition est que pour chaque indice i de I, on se donne un élément x_i de I. Dans le cas où $I = \mathbf{N}$, on retrouve la notion de suite.

Exemple 12.71. La suite $(2\sqrt{n}+1)_{n\in\mathbb{N}}$ est une famille de réels indexée par \mathbb{N} (cela signifie que pour tout $n\in\mathbb{N}$, $2\sqrt{n}+1\in\mathbb{R}$).

Questions de cours

- 1. Énoncer les lois de Morgan pour les ensembles.
- 2. Définir la notion d'ensembles disjoints.
- 3. Définir la notion de partition (aussi appelée recouvrement disjoint) d'un ensemble.
- 4. Définir l'application identité sur un ensemble E.
- **5.** Soit E un ensemble, $A \subset E$. Définir l'indicatrice de A.
- 6. Définir la notion d'image directe d'un ensemble par une application.
- 7. Définir la notion d'image réciproque d'un ensemble par une application.
- 8. Soit E, F deux ensembles, $f: E \longrightarrow F$, $A \subset E$ et $B \subset F$. Donner la relation d'inclusion existant entre A et $f^{< r>}(f(A))$, ainsi qu'entre B et $f(f^{< r>}(B))$.
- 9. Définir la notion d'ensemble image.
- 10. Soit E, F deux ensembles, $f: E \longrightarrow F$. Donner les trois conditions équivalentes qui traduisent que f est injective.
- 11. Soit E, F deux ensembles, $f: E \longrightarrow F$. Donner les trois conditions équivalentes qui traduisent que f est surjective.
- 12. Soit E, F deux ensembles, $f: E \longrightarrow F$. Donner les trois conditions équivalentes qui traduisent que f est bijective.
- 13. Soit E, F deux ensembles, $f: E \longrightarrow F$. Que peut-on déduire de l'égalité f(E) = F?
- 14. Que peut-on dire de la composée de deux applications injectives (resp. surjectives, resp. bijectives)?
- 15. Donner la caractérisation de la bijectivité avec la composition.
- **16.** Soit E, F, G trois ensembles, $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications bijectives. Compléter:

$$(g \circ f)^{-1} = \dots$$
 et $(f^{-1})^{-1} = \dots$