FICHE E : Equivalents et développements limités usuels

FICHE E EQUIVALENTS ET

DEVELOPPEMENTS LIMITES
USUELS

E.1 Equivalents usuels en zéro
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E.2

Développements limités usuels en zéro

¢ DL qui se déduisent de celui de la fonction exponentielle.
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e DL qui proviennent (directement ou indirectement) de celui de = —
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ala=1)...(a—(k—1))
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e Autres DL a connaitre. Soit a € R. On note (Z) =

o (1+x)* zol—l—oza:—i—MxQ—F---—i—a(a_1)”'((1_(”_1))1‘"4—0(1‘") = i (2)3}’“—1—0(1‘");
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o tan(z) =, 3 + o(2?) (et méme o(z*) ou O(z%)).

e Cas général : formule du Taylor-Young en 0. Soit I un intervalle non réduit a un point contenant O,
f: I —> R et neN. On suppose que f est de classe €™ sur I. Alors,

no p(k)
f@) = ) fk—,(o)x’“ +o(a").
k=0 :
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