FICHE C

ÉTUDE DES SUITES IMPLICITES

C.1 Solutions d'une équation du type f(x) = g(n)

Méthode C.1. Suite implicite dont le terme général est solution de f(x) = g(n)

Soit $f: I \longrightarrow f(I)$ une fonction strictement monotone continue (donc bijective). Si $\underline{g(n)} \in f(I)$, alors l'équation f(x) = g(n) d'inconnue $x \in I$ admet une unique solution pour tout $n \in \mathbb{N}$, qu'on peut noter u_n . (u_n) est une suite implicite et on a facilement plusieurs propriétés sur celle-ci.

- **1.** Pour tout $n \in \mathbb{N}$, $u_n \in I$ (puisque u_n est définie comme la solution de f(x) = g(n) d'inconnue $\underline{x \in I}$).
- 2. Pour tout $n \in \mathbb{N}$, $u_n = f^{-1}(g(n))$, et on peut souvent en déduire aisément les variations de (u_n) (en se rappelant que le théorème de la bijection assure que f^{-1} est de même variation que f).
- 3. $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f^{-1}(g(n)).$

Exercice d'application C.2. On note, pour tout $n \in \mathbb{N}$, (E_n) l'équation $xe^x = n$.

- **1.** Montrer que pour tout $n \in \mathbb{N}$, l'équation (E_n) admet une unique solution x_n dans \mathbb{R}_+ .
- **2.** Justifier que la suite (x_n) est croissante.
- **3.** Déterminer la limite de la suite (x_n) .

- 1. La fonction $f: x \longmapsto xe^x$ est dérivable, de dérivée $f': x \longmapsto (x+1)e^x$. Donc, pour tout x>0, f'(x)>0, ce qui entraı̂ne que f est strictement croissante sur $[0; +\infty[$. En particulier, f réalise une bijection de $[0; +\infty[$ dans $f([0; +\infty[)$. Or, f(0)=0 et $\lim_{x\to +\infty} f(x)=+\infty$, donc $f([0; +\infty[)=[0; +\infty[$. Comme, pour tout $n\in \mathbb{N}$, $n\in f([0; +\infty[)$, on en déduit que l'équation (E_n) admet une unique solution.
- 2. Pour tout $n \in \mathbb{N}$, $x_n = f^{-1}(n)$. Or f est croissante, donc f^{-1} l'est également d'après le théorème de la bijection. Ainsi, (x_n) est croissante.
- **3.** On a $\lim_{x \to +\infty} f(x) = +\infty$ et f croissante donc $\lim_{x \to +\infty} f^{-1}(x) = +\infty$ puis (x_n) diverge vers $+\infty$.

C.2 Solutions d'une équation du type $f_n(x) = 0$

Méthode C.3. Suite implicite dont le terme général est solution de $f_n(x) = 0$

Soit, pour tout $n \in \mathbb{N}$, $f_n : I \longrightarrow f_n(I)$ une fonction strictement monotone continue (donc bijective). Si $\underline{0 \in f_n(I)}$, alors l'équation

$$(E_n): \quad f_n(x) = 0,$$

d'inconnue $x \in I$ admet une unique solution pour tout $n \in \mathbb{N}$, qu'on peut noter u_n . (u_n) est une suite implicite et on donne ci-après différentes méthodes pour obtenir des propriétés sur celle-ci.

- 1. Montrer que (u_n) est majorée/minorée/bornée. On utilise que pour tout $n \in \mathbb{N}$, $u_n \in I$ (puisque u_n est définie comme la solution de $f_n(x) = 0$ d'inconnue $\underline{x \in I}$. Si on demande un encadrement plus précis du type « montrer que pour tout $n \in \mathbb{N}$, $u_n \in [a \, ; \, b]$ », on calcule $f_n(a)$, $f_n(b)$ et on trouve par exemple $f_n(a) \leq 0 \leq f_n(b)$, puis $f_n(a) \leq f_n(u_n) \leq f_n(b)$ (on a $f_n(u_n) = 0$ car par définition u_n est solution de (E_n)), puis on en déduit un encadrement de u_n en utilisant la stricte monotonie de f (on a $a \leq u_n \leq b$ si f_n est strictement croissante et $b \leq u_n \leq a$ si f_n est strictement décroissante).
- 2. Déterminer le sens de variation de (u_n) . On étudie le signe de $f_{n+1}(x) f_n(x)$ pour $x \in I$ (méthode habituelle : on factorise!). Supposons par exemple que $f_{n+1}(x) \ge f_n(x)$. Alors on applique le raisonnement

suivant:

$$f_{n+1}(u_n) \ge f_n(u_n)$$
 donc $f_{n+1}(u_n) \ge 0$ car $f_n(u_n) = 0$,
puisque u_n est la solution de (E_n)
donc $f_{n+1}(u_n) \ge f_{n+1}(u_{n+1})$ car $f_{n+1}(u_{n+1}) = 0$,
puisque u_{n+1} est la solution de (E_{n+1})

Ensuite, on conclut en utilisant le sens de variation strict de f_{n+1} .

- 3. Établir la convergence de (u_n) . Avec les deux points précédents et le théorème de la limite monotone.
- 4. Déterminer la limite. Il faut se laisser guider par l'énoncé.

Exemple C.4. Posons pour tout $n \in \mathbb{N}$, la fonction f_n définie sur \mathbb{R} par $f_n(x) = x^n + x - 1$ et considérons l'équation

$$(E_n): x^n + x - 1 = 0$$

d'inconnue $x \in \mathbf{R}_+$.

Voici des questions qui pourraient être posées.

- 1. Montrer que, pour tout $n \in \mathbb{N}$, l'équation (E_n) admet une unique solution dans \mathbf{R}_+ , qu'on notera u_n . Soit $n \in \mathbb{N}$. La fonction f_n est dérivable et pour tout $x \ge 0$, $f'_n(x) = nx^{n-1} + 1 > 0$, donc f_n est strictement croissante. Étant également continue, on peut lui appliquer le théorème de la bijection : f_n réalise une bijection de \mathbf{R}_+ dans $f_n(\mathbf{R}_+)$. On a $f_n(0) = -1$ et $\lim_{x \to +\infty} f_n(x) = +\infty$, donc $f_n(\mathbf{R}_+) = [-1; +\infty[$. Comme $0 \in f_n(\mathbf{R}_+)$, l'équation (E_n) admet une unique solution positive.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_n \in [0; 1]$. Soit $n \in \mathbb{N}$. On a $f_n(0) = -1$, $f_n(1) = 1$, donc $f_n(-1) \le 0 \le f_n(1)$. Or par définition, $f_n(u_n) = 0$, donc $f_n(0) \le f_n(u_n) \le f_n(1)$. Puisque f_n est strictement croissante, on obtient $0 \le u_n \le 1$.
- 3. Soit $n \in \mathbb{N}$. Étudier, pour tout $x \in [0; 1]$, le signe de $f_{n+1}(x) f_n(x)$ et en déduire le sens de variation de (u_n) . Soit $x \in [0; 1]$ On a

$$f_{n+1}(x) - f_n(x) = x^{n+1} + x - 1 - (x^n + x - 1) = x^{n+1} - x^n = x^n(x - 1).$$

Or, puisque $x \ge 0$, on a $x^n \ge 0$. De même, puisque $x \le 1$, on a $x - 1 \le 0$. Ainsi, $f_{n+1}(x) - f_n(x) \le 0$. Comme $u_n \in [0; 1]$, on en déduit

$$f_{n+1}(u_n) \leqslant f_n(u_n).$$

Or $f_n(u_n) = 0$ par définition, donc

$$f_{n+1}(u_n) \leqslant 0.$$

Or $f_{n+1}(u_{n+1}) = 0$ par définition. Donc,

$$f_{n+1}(u_n) \leqslant f_{n+1}(u_{n+1}).$$

Puisque f_{n+1} une strictement croissante, on a :

$$u_n \leqslant u_{n+1}$$
.

Ainsi, $(u_n)_{n\in\mathbb{N}}$ est une suite croissante.

- 4. (a) Montrer que (u_n) converge vers un réel $\ell \in [0; 1]$. La suite (u_n) est croissante et majorée par 1, donc elle converge vers un réel ℓ d'après le théorème de la limite monotone. De plus, pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$, donc en passant à la limite dans cette inégalité on obtient $0 \le \ell \le 1$.
 - (b) Montrer que si $\ell < 1$, $\lim_{n \to +\infty} u_n^n = 0$. Comme (u_n) est croissante, on a pour tout $n \in \mathbb{N}$, $0 \le u_n \le \ell$, puis $0 \le u_n^n \le \ell^n$. Or si $\ell < 1$, $\ell^n \xrightarrow[n \to +\infty]{} 0$ et le théorème d'encadrement assure que $u_n^n \xrightarrow[n \to +\infty]{} 0$.
 - (c) En raisonnant par l'absurde, montrer que $\lim_{n\to+\infty}u_n=1$. Supposons par l'absurde que $\ell\neq 1$, c'est-àdire que $\ell<1$. Soit $n\in \mathbb{N}$. On a par définition

$$u_n^n + u_n - 1 = 0$$

En passant à la limite dans cette égalité, puisque $u_n^n \underset{n \to +\infty}{\longrightarrow} 0$ et $u_n \underset{n \to +\infty}{\longrightarrow} \ell$, on obtient $\ell-1=0$, puis $\ell=1$, ce qui est contradictoire. Finalement, notre hypothèse de départ étant fausse, on en déduit que $\lim_{n \to +\infty} u_n = 1$.

Exercice d'application C.5. Pour tout $n \in \mathbb{N}^*$, on définit la fonction f_n sur \mathbb{R}_+ par $f_n(x) = x^n + 9x^2 - 4$ et on considère l'équation

$$(E_n): \quad f_n(x) = 0$$

d'inconnue $x \in \mathbf{R}_+$.

- 1. (a) Montrer que pour tout $n \in \mathbb{N}$, l'équation (E_n) admet une unique solution, qu'on notera u_n .
 - **(b)** Montrer que pour tout $n \in \mathbb{N}$, $u_n \in \left[0; \frac{2}{3}\right[$.
- **2.** Soit $n \in \mathbb{N}$.
 - (a) Montrer que pour tout $x \in \left[0; \frac{2}{3}\right], f_{n+1}(x) < f_n(x).$
 - (b) En déduire le signe de $f_n(u_{n+1})$, puis les variations de la suite $(u_n)_{n\in\mathbb{N}}$.
- **3.** (a) Justifier que (u_n) converge et que sa limite ℓ appartient à $\left[0; \frac{2}{3}\right]$.
 - **(b)** Montrer que $\lim_{n\to+\infty} u_n^n = 0$, et en déduire que $\lim_{n\to+\infty} u_n = \frac{2}{3}$.
- 1. (a) La fonction f_n est dérivable sur \mathbf{R}_+ et, pour tout $x \in \mathbf{R}_+$, $f'_n(x) = nx^{n-1} + 18x$, donc $f'_n(x) > 0$ si x > 0, donc f_n est strictement croissante sur \mathbf{R}_+ . Ainsi, f_n réalise une bijection de \mathbf{R}_+ dans $f(\mathbf{R}_+)$. Or f(0) = -4 et $\lim_{x \to +\infty} f_n(x) = +\infty$, donc $f(\mathbf{R}_+) = [-4; +\infty[$. Comme $0 \in f(\mathbf{R}_+)$, on en déduit que l'équation (E_n) admet une unique solution positive.
 - (b) On a $f_n(0) = -4$ et $f_n\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^n \geqslant 0$, donc $f_n(0) \leqslant 0 \leqslant f_n\left(\frac{2}{3}\right)$, donc comme $f_n(u_n) = 0$ par définition, $f_n(0) \leqslant f_n(u_n) \leqslant f_n\left(\frac{2}{3}\right)$. Or f_n est croissante, donc avec le théorème de la bijection on obtient que f_n^{-1} l'est également. En composant les inégalités précédentes par f_n^1 , on en déduit $0 \leqslant u_n \leqslant \frac{2}{3}$.
- **2.** (a) Soit $x \in \left]0; \frac{2}{3}\right[$. On a

$$f_{n+1}(x) - f_n(x) = x^{n+1} + 9x^2 - 4 - (x^n + 9x^2 - 4) = x^{n+1} - x^n = x^n(x-1).$$

Or $x^n \ge 0$, x - 1 < 0 (car $x \le \frac{2}{3}$), donc $f_{n+1}(x) < f_n(x)$.

- (b) Puisque $u_n \in \left]0; \frac{2}{3}\right[$, la question précédente assure que $f_{n+1}(u_n) < f_n(u_n)$. Or $f_n(u_n) = 0$ par définition, donc $f_{n+1}(u_n) < 0$. Ensuite, $f_{n+1}(u_{n+1}) = 0$ par définition, donc $f_{n+1}(u_n) < f_{n+1}(u_{n+1})$. Comme f_{n+1} est strictement croissante, le théorème de la bijection assure que f_{n+1} l'est aussi. En composant les inégalités précédentes par f_{n+1}^{-1} , on en déduit que $u_n < u_{n+1}$, ce qui prouve que (u_n) est strictement croissante.
- 3. (a) On sait que (u_n) est croissante et majorée par $\frac{2}{3}$, donc le théorème de la limite monotone assure que (u_n) converge. De plus, pour tout $n \in \mathbb{N}$, $0 \le u_n \le \frac{2}{3}$, donc en passant à la limite on en déduit $0 \le \ell \le \frac{2}{3}$.
 - (b) Soit $n \in \mathbb{N}$. Comme u est croissante et converge vers ℓ , $u_n \leq \ell$. Ainsi, $0 \leq u_n \leq \ell$, puis $0 \leq u_n^n \leq \ell^n$. Or, $\ell \in \left[0; \frac{2}{3}\right]$ donc $\ell^n \xrightarrow[n \to +\infty]{} 0$, et le théorème d'encadrement assure que $u_n^n \xrightarrow[n \to +\infty]{} 0$. Or on a par définition $f_n(u_n) = 0$, donc

$$u_n^n + 9u_n^2 - 4 = 0$$

et le passage à la limite dans cette égalité fournit

$$0 + 9\ell^2 - 4 = 0$$

puis, comme $\ell \geqslant 0$, $\ell = \frac{2}{3}$.