Programme N°4

11 novembre au 22 novembre

Chapitre 7: fonctions usuelles.

- Fonction logarithme népérien : propriétés algébriques et analytiques, inégalité $\ln(x) \le x 1$ pour tout x > 0, $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$
- Logarithme dans une base quelconque.
- Fonction exponentielle : propriétés algébriques et analytiques, inégalité $e^x \ge x+1$ pour tout $x \in \mathbf{R}$, $\lim_{x\to 0} \frac{e^x-1}{x} = 1$
- Fonction puissance a, où $a \in \mathbf{R}$: écriture sous forme exponentielle, propriétés algébriques et analytiques.
- Théorème des croissances comparées.
- • Fonctions ch et sh : propriétés algébriques, analytiques, relation $\mathrm{ch}^2-\mathrm{sh}^2=1.$

Chapitre 8 : bijections réelles et fonctions circulaires réciproques.

- Définition de fonction bijective (en comptant les solutions d'une équation), de bijection réciproque, lien entre une fonction et sa réciproque.
- Théorème de la bijection.
- Propriétés des fonctions réciproques : sens de variation de la bijection réciproque, continuité, dérivabilité, limites.
- Arctangente : définition, imparité, lien avec cosinus et sinus, dérivabilité et expression de la dérivée.
- Arccosinus : définition, propriété de symétrie de la courbe, lien avec cosinus et sinus, dérivabilité et expression de la dérivée.
- Arcsinus : définition, imparité, lien avec cosinus et sinus, dérivabilité et expression de la dérivée.

Chapitre 9 : équations et géométrie dans les complexes.

- Fonction polynomiale complexe, racine d'une fonction polynomiale, factorisation quand on connaît une racine (sans division polynomiale pour le moment).
- Racine carrée d'un nombre complexe : définition, expression quand le complexe est donné sous forme exponentielle, méthode pour trouver une racine carrée d'un complexe donné sous forme algébrique.
- Racines d'un trinôme à coefficients complexes. Cas d'un trinôme à coefficients réels. Relations coefficients/racines.
- Racines n-ième de l'unité (définition et expression), racines n-ièmes d'un complexe sous forme exponentielle. Somme et produit des racines n-ièmes de l'unité.
- Géométrie dans les complexes : transformations (translation, rotation de centre O, homothétie de centre O). Interprétation géométrique du module et d'un argument de $\frac{c-a}{b-a}$, où a,b et c sont les affixes respectives de trois points distincts A,B et C du plan. Caractérisation de A,B,C alignés et de \overrightarrow{AB} et \overrightarrow{AC} orthogonaux.

Questions de cours.

- Énoncer le théorème de dérivation d'une bijection réciproque.
- Définir la notion de puissance réelle.
- Définir la fonction arcsinus, donner son domaine de dérivabilité et l'expression de sa dérivée, tracer sa courbe représentative.
- Définir la fonction arccosinus, donner son domaine de dérivabilité et l'expression de sa dérivée, tracer sa courbe représentative.
- Définir la fonction arctangente, donner son domaine de dérivabilité et l'expression de sa dérivée, tracer sa courbe représentative.
- Expression des racines n-ièmes de re^{it} , où $n \ge 1$, r > 0 et $t \in \mathbf{R}$.

PCSI1 Lycée H. Loritz

Savoirs-faire.

- Déterminer les limites $\lim_{x\to 0} \frac{\ln(1+x)}{x}$ puis $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.
- Montrer que pour tout $x \in [-1; 1]$, $Arccos(-x) = \pi Arccos(x)$.
- Montrer que pour tout x > 0, $\operatorname{Arctan}(x) + \operatorname{Arctan}\left(\frac{1}{x}\right) = \frac{\pi}{2}$.
- Montrer que $Arctan(2) + Arctan(3) = \frac{3\pi}{4}$.
- Déterminer les racines carrées d'un nombre complexe donné par le colleur, sous forme algébrique ou sous forme exponentielle.
- Soit $n \in \mathbb{N}^*$. Résoudre une équation du type $z^n = a$, où a est un nombre complexe donné par le colleur.

Révisions des programmes précédents.

- Énoncer la formule de Pascal et du binôme de Newton.
- Linéariser un produit d'expressions trigonométriques.
- Soit $x \in \mathbf{R}$. Transformer $\cos(nx)$, $\sin(nx)$ en polynômes en $\cos(x)$, $\sin(x)$, où n est un entier naturel donné par le colleur.

Lycée H. Loritz

PCSI1